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ABSTRACT

An algorithm is described for reconfiguring a 2-dimensional VLSI array on a silicon
wafer that has some faulty cells. The functional cells of the array are intercon-
nected in order to simulate a fault-free array of smaller size. where the interconnec-
tion wires are routed inside horizontal and vertical channels, according to the
Manhattan model. The concept of simulation distance is introduced. and it is shown
to be related to the length of the longest interconnection wire. The algorithm makes
use of network flow techniques in order to find a wiring with minimum simulation
distance. This results in a practical heuristic for minimizing the maximum wire
length. The complexity and performance of this algorithm are also discussed in the

paper.

KEYWORDS: network flow, VLSI array. fault tolerance.
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1. INTRODUCTION

The technique of wafer scale integration for VLSI circuits has received considerable attention
in recent years. The basic idea is 10 assemble a large system of processors. or cells, on a single sili-
con wafer so that the chip packaging costs are cut off. Due to the physical and technological limits
of the integration process, some cells of the wafer can be defective, or "dead”. Therefore, the prob-

lem arises of reconfiguring the interconnection network using the "live" cells.

The reconfiguration of one and two-dimensional arrays of cells, typical of VLSI systolic
architectures, has been investigated in [4, 2). In both papers. a probabilistic model of cell failure is
adopted and algorithms for minimizing the maximum wire length in the reconstructed array are

given. Channel width and area penalties are also considered.

In this paper we present a new approach to the problem of reconfiguring two-dimensional
arrays. based on network flow techniques. Section 2 illustrates the basic ideas on which our
approach is based. In Section 3. we give an algorithm for the reconstruction of two-dimensional

arrays. Section 4 contains some conclusive remarks.

2. PRELIMINARIES

We assume the same model for the wafer scale system as in [4]. The cells are positioned in a

Jn xvVn array. The strips between two rows or columns of cells are called channels. Each chan-

-z

’ nel contains a fixed number of tracks on which the interconnection wires are routed. Suppose that

- m cells in the arrayv are dead. We investigate the problem of interconnecting the remuining live
- cells into u square array of size [Va —m |[x|Vn —m |. with the goal of minimizing the maximum |
B
wire length in the reconstructed array. See an example in figs. 1 and 2. taken from [4]. g
Consider the distribution of faults shown in fig. 3. It 15 easy to see thal the wiring of fig. 4 .
3 provides an optimal reconstruction. This observation suggests the following reconfiguration stra- _1‘
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Figure 1 A square array of 64 cells. The live cells are
N represented by a square. The dead cells are represented by a
} ; CTOSS.
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Figure 2 Example of reconfiguration of the arrav in fig. 1. s0
that the live cells form a square array of 36 cells.
i (1) Select an intermediate array whose dead cell distribution consists of exactly Jn =Jn = m

—
rowsand van = vn =m columns.
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(2) Interconnect the live cells of the given array in order to construct the intermediate array

- (3) Route the intermediate array by connecting each live cell to the closest live cells on the same

row or column.

0O O x 00 x O O

O 0O x O O x 0O
f X X X X X x X X
r 0O 0O x O 0 x O 0O
0O 0O x 0 O x 0O 0O
L X X X X X X x X
. OO0 x 0 0O x O O
'J OO0 x 0 0C x 300

Figure 3 An array of 64 cells whose dead cells are arranged
into two rows and two columns.
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Figure 4 Optimal reconfiguration of the arrav in fig 3.
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The second step can be viewed as a simulation of the intermediate array by the original one.

' Namely. each live cell of the intermediate array is simulated by a distinct live cell of the original
[ array.
%

We introduce now the basic terminology on network flows, 1o be used in the next sections.

. A (flow) network is a 6-tuple N = (U .A b c .5 1 ) where:

N (1) U is aset of nodes:;

.__- (2) A QUXU is aset of directed arcs (the digraph with vertex set V and arc set 4 is called under-
: lyving digraph of N);

: (3) & U A — N associates to all nodes and arcs a nonnegative integer capacity;

-

. (4) ¢:A — N associates to each arc a nonnegative integer cost:

- (5) s andt are two designated nodes called the source and the sink. respectively.

. A flow for N is a function f :A =R that satisfies the following conditions:

(1) 0L f(uwv)Sb(uwv) foralluv)€EA:

(2) Y fuw)= Y fw)<b(v) forallv €U —{s.¢}.

E ¢ (urv 1€ 4 wolv w )€ A

The cost of the flow f is the quantity:

COST(f )= ¥ cluw)f(uv)

(w v)E A
il The value of the flow f is given by:
VALUE(f )= ¥ [ (s
G B
A minimum cost flow of value ¢ for N is a flow f for N such that VALUE(S ) =6 and COST(/ ) ix
minimum.
[
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3. THE NETWORK FLOW TECHNIQUE

We represent the 2-dimensional array with an undirected graph G = (V £ ), where:

V={G.j)11<i.j €£Vn} and

E={G.j))kINli—kl+1j~=l1=1}

Let dg (u.v) denote the distance between vertices © and v in the graph G. The dead cells are in a

subset of V. denoted by D.

In the rest of this section, we assume that the intermediate array is given and we denote by T
the set of its dead cells. which we call target. Note that |7 | 2 | D |. The simulation between the
cells of the original and intermediate array is expressed by a function 0 mapping vertices into ver-
tices where o(u ) = v iff cell v of the intermediate array is simulated by cell z of the original array.

The function & must satisfy the following properties:
{1) no cell is simulated by more than one cell;

(2) only the live cells can perform simulations;

(3) no dead cell in the target is simulated:

t4)  all cells outside the target have to be simulated.

More tormally. this can be expressed by defining 0 as a one-to-one function (property 1)
mapping the set V — D (property 2) into the set V —(D ()T ) (property 3). such that, for all
v €V —7 . there exists a vertex u such that o(u ) =v (property 4). We associate 10 0 a directed

grarh G, =V A4 ), where ', =\" = (D n T)and (u v) € A, whenever ofu } =1 .

Lemma I 3 function ¢ 1s a stmulation mapping it and onlv if the graph (,, consists of disjoint
paths that are either cveles of one or more live cells or chains starting from a five cell in the target.
anding at a dead cell vutside the target. and having the intermediate cells all live. Furthermore. the

number o! these chains is exactly /) n (V=71
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Proof: Assume that o is a simulation mapping. Since 0 1s injective, each vertex in V', has at most
' one ingoing and one outgoing arc. This implies that G, consists of disjoint cycles and/or chains.
Because o is defined on the set of live cells, then each cycle in G, contains only live cells and every
chain in G, consists of all live cells, but the last one, which is a dead cell outside the target.
Furthermore, all chains start at a live cell inside the iarget. since each vertex in V —7 has an
inverse mapping. Finally. each dead cell outside the target has an ingoing arc, so that the number
of chains 1s exactly D n (V =T)l. This completes the proof of the Only-If part. The proof of

-~ the /f part readily follows. O

Let dg (1 .v ) denote the distance between vertices ¥ and v in the graph G, i.e. the minimum

number of edges in any path from u to v. The maximum wire length [, in 1he interconnection of the
intermediate array generated by O is given by:
. ly=max {d(u.v) | (oc(u)olv)) €E}

We introduce now the concept of simulation distance d ,. defined by:

d,=max {dg(v.ow)) lu €V}

which is related to the maximum wire length as stated in the following proposition.

Proposition 1 Let o be a simulation mapping, then/, < 2d, + 1.

Proof: A consequence of the inequality: dg (v .v) € dg (u.w)+dg(w.v). O
~
: Given a positive integer k. an auxiliary graph can be used to check whether d, S k. let
G © = .1"" ") be the directed graph defined as follows.
(ty =V U {5 2 1. where s and  are two new distinct vertices.
(2) At =4, U:\‘,‘ ‘Ux\.,where:
- A =G w) i €T (V=D)L
A =urv)EVXV ty €V =D v €V —(D ﬂ 7). andd, (v v ) Skt and _::
i 1
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A ={ur)lu €DV =T)
The length of arc (u.v) in A,}*’ is defined as the distance between u and v in G. Fig. 5 shows

the digraph G ‘!’ corresponding 1o the array of fig. 1 and to the target of fig. 3.

Proposition 2 Let G. D and 7 be an instance of the simulation problem. Then there exists a simu-
lation function o with simulation distance d, =k if and only if the digraph G*’ contains

iD n (V —=T)! disjoint directed paths from s to ¢.

Proof: Follows from the definition of G and Lemma 1. O

In order to minimize the global wire length in the reconstruction of the intermediate array.
we look for a set of disjoint paths in G%’ with minimum global length. Moreover. it is convenient
to choose the arcs in each path as short as possible. so to decrease the probability that {, attains the

bound 2d , + 1. For this purpose. we can associate a cost ¢ (¢ .v ) = x(dg (z .v)) 10 each arc (z .v) in

Figure S The digraph G'! corresponding o the array of fig
1 and 1o the target of fig 3. The dead cells vutside the target
are represented by a circle. The live cells inside the target
are represented by a triangle. Onlv the ares in Al are
shown, where an arc without arrow stands !tor a pair of
svmmetric arcs.
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(1)

(2)

'. depending on the length of the arc. so that the following conditions are satisfied:

xtdy+ - - +d,)>x(d)+ - +x(d,) foralld, €N i =1 ., P.

xte )+ - +x(e,)<x(d)+ - - +x(d,) implies

eyt - +e, <dy+ - +d, . foralle,d, EN. i =1, g.j =1

Both conditions are fulfilled by the cost function x(d )=d!*¢, provided € is a sufficiently

small positive constant.

Now, we present the algorithm S/M that finds a simulation function ¢ with minimum simu-

lation distance, given a positive integer n. and the sets D and 7T of dead and target cells, respec-

uvely.

Algorithm S/M

Input: positive integer n, sets D and T of dead and target cells, respectively:

Out pur: simulation function ¢ with minimum simulation distance.

begin

d=1D (V=TI
BUILDNET (1.N'1);
if MAXFLOW (NV) 2 ¢
then begin
f = MINCOSTEFLOW (N'V o).

SIGMA (N ' o)

b

end N
else begin —1‘
a = 1. :
b:=2Vn -2, %

k :=l(a +b )/2‘,

g
3
o




repeat

. BUILDNET (k .N®*));

o if MAXFLOW (N®)) 2 ¢

: then b =k '
!' elsea =% ; -

* k=@ +5)2 ;

" untila =5; J

-4

- f := MINCOSTFLOW (N %) g): ]

SIGMA (N®) f o) 3

‘ end e_j
- end. i}

. procedure BUILDNET (k .N*); .
N -4
. begin -—q

Build the auxiliary flow network N*'=(U A% p c s.t)
as follows: ,
N
n the underlying digraph of N is G % t "q
~ each vertex and arc has unit capacity;
B each arc (u.v)in 4, hascost ¢ (u.v) = (d; (v v ) *¢
- for all the remaining arcs ¢ (v ,v ) =0.
end:
o procedure SIGMA (N'*'.f &)
begin
for each arc (v v ) € A" "do
. if fuv)=1

then o(u ) :=v;
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end:

function MAXFLOW (N );

begin

Return the maximum flow value for the networkNV.

end:

function MINCOSTFLOW (N .¢):

begin

Return a minimum cost flow of value ¢ for the networkN.

end:

Figs. 6 and 7 show the application of algorithm S/M to the array of fig. 1.

SNy

T
o

OO <A O O
H—~—_ C x C C

0O x 0O O p~>~1~>0

O<{3<PD O O %x 0O 0O

0

Figure 6 Minimum cost flow n  the network N7
corresponding to the array of tiy 1 and to the target of fig 3.
Only the arcs in A,° with nonzero (umit) tlow are shown.
Note that k¥ =2 is the mimimum_value tor which V" ' ad-
mits a feasible flow of value I D n (V' =7)1 =15,
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Figure 7 Reconfiguration of the array in fig. 1 produced by
the algorithm S/M.

Proposition 3 Algorithm SIM correctly computes a simulation function ¢ with minimum simula-

uion distance in O (n3) time.

Proof: The correctness of the algorithm follows from the fact that any minimum cost flow for

N ¢ of valuegp= 1D [)(V =T)I consists of ¢ disjoint paths from s to ¢ [5].

At most O (logn ) maximum flow computations are performed. each taking time O (n*3) (1.

cap. 6]. The minimum cost flow computation is executed only once, and has complexity O (n?) (3.

cap. 4]. O

4. CONCLUDING REMARKS

The algorithm described in the previous section assumes that the target i~ 2iven. o criteria
seent Lo be suitable to select a "good” target:

€1/ maximum covering of the dead cells:

{27 umtorm distribution of the live cells outside the target.
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Criterium 1 is preferable if the number of uncovered cellsiso (1D ).

A variation of the problem arises when the number of live cells is not a perfect square and all
the live cells have 10 be used in the reconfiguration process. In this case the reconstructed array is a
square array that misses some border cells, and the corresponding intermediate array can be con-

structed with a slight modification of the above technique.

The network approach can be exiended in order to take into account also the channel width.
Let N “1°? pe the network obtained from N %’ by assigning capacity ¢; to each node and capa-
city ¢, to each arc in A,{*). By using arguments similar to the ones of section 2, we obtain that if
N2 admits a flow of value |D (N (V =T)1, then there is a reconstruction of the array with

maximum wire length and channel width bounded by ¢ and ¢,. respectively.
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